NLO QCD corrections to 4 b-quark production

Nicolas Greiner

University of Illinois at Urbana-Champaign

in collaboration with A.Guffanti, J.P.Guillet, T.Reiter, J.Reuter

LoopFest IX, 06/21/2010

Outline

- Motivation
- $q\bar{q} \rightarrow 4b$
 - Calculation
 - Results
- Outlook *pp* → 4*b*

Motivation

- NLO QCD corrections can lead to sizeable deviations from LO result.
 - → LO result often just rough estimate.
- NLO result reduces theoretical uncertainties. (scale dependence)
- Precision measurements require precise theoretical predictions for SM contribution.
- BSM models (SUSY) naturally have multiparticle final states.
- NLO (NNLO) result desirable for important processes.
 - $2 \rightarrow 4$ currently state of the art (NLO).
 - $pp o t\bar{t}b\bar{b}$ [Bredenstein, Denner, Dittmaier, Pozzorini], [Bevilacqua, Czakon, Papadopoulos, Pittau, Worek]
 - pp → Wjjj [Berger et. al.],[Ellis,Melnikov,Zanderighi]
 - $pp o t\bar{t}jj$ [Bevilacqua,Czakon,Papadopoulos,Worek]
 - $pp o \gamma/Z$ jjjj [Berger,Bern,Dixon,Febres Cordero,Ford,Gleisberg,Ita,Kosower,Maitre]

Motivation

4b Final State 5σ LHC Discovery Contours m_{stop} =1 TeV, no squark mixing

[Dai,Gunion,Vega]

- For certain MSSM scenarios:
 H → bbb enhanced.
- maybe the only discovery channel
- also important for other BSM scenarios
- important to know SM background
- added to Les Houches wish list

Calculation

$$pp \rightarrow 4b + X$$

$$egin{aligned} {\sf LO}: & q \; ar q
ightarrow 4b \ & g \; g
ightarrow 4b \end{aligned}
ight\}$$
 Virtual corrections.

$$egin{aligned} extstyle extstyle NLO: & q \ ar{q}
ightarrow 4b + g \ & g \ g
ightarrow 4b + g \ & q \ g
ightarrow 4b + q \ \end{aligned}
ight.$$
 Real emission.

Simplifications:

- b-quark massless
- neglect b-quark in initial state (q ≠ b)
 Motivated by LHC kinematics and applied cuts.

$qar q o 4b \ + X$ [Binoth,NG,Guffanti,Guillet,Reiter,Reuter]

$$\sigma_{NLO} = \int_{n+1} \left(d\sigma^R - \frac{d\sigma^A}{\sigma} \right) + \int_{n} \left(d\sigma^B + \frac{d\sigma^V}{\sigma} + \int_{1} \frac{d\sigma^A}{\sigma} \right)$$

2 independent calculations, both free of divergencies.

Virtual corrections: GOLEM [Binoth et. al]

Real emission and Born: MadGraph [Long, Stelzer], Whizard [Kilian, Ohl, Reuter]

Subtraction terms: MadDipole [Frederix,Gehrmann,NG], Whizard

Integration: MadEvent [Maltoni, Stelzer]

 All ingredients framework independent and stand alone applications.

Virtual corrections

General One Loop Evaluator for Matrix-Elements

- Based on Qgraf and Form
- Library for one-loop integrals (golem95)
 - \rightarrow T. Kleinschmidt's talk
- Matrix element generator for one-loop amplitudes
- Second, independent code based on FeynArts and FeynCalc for cross-checks

Subtraction terms

MadDipole: Package that automatically generates subtraction terms $(d\sigma^A)$ and integrated subtraction terms $(\int_1 d\sigma^A)$ in form of Catani-Seymour dipoles. (Color and helicity summed)

User: specify the NLO process

MadDipole: returns Fortran code for all necessary terms.

- unintegrated subtr. terms
- integrated terms: finite terms + coeff. of pole terms
- provides consistent calls of pdfs and cuts.

Several checks

- Second implementation in Whizard.
- Check against MCFM.
- Varying the cut-parameter α of subtraction terms provides powerful checks on many levels.

- Subtraction terms are only needed near singularity
 → Cut away parts of phase space where there is no sing.
- ullet Introduce parameter lpha: $\mathcal{D}_{ij} o \mathcal{D}_{ij} heta(lpha > heta_{ij})$ [Nagy,Trocsanyi]

Integrated subtraction terms also depend on α , total result however independent:

$$\int_{n+1} \left(d\sigma^R - d\sigma^A \right) + \int_n (\text{finite parts of int. dip.}) = \text{const}$$

Phase space integration

Numerical phase space integration done using MadEvent where GOLEM- and MadDipole-code has been plugged in.

- Sanity checks of correct interplay virtual \leftrightarrow reals by comparing Born and coefficients of $1/\epsilon$ and $1/\epsilon^2$ -terms.
- Born cross section checked with Whizard.
- Calculation done using 't Hooft-Veltman- and \overline{MS} -scheme.
- Cut parameter set to $\alpha = 10^{-2}$.
 - → Leads to increase of speed and stability of integration.
- Used $3 \cdot 10^8$ points for real emission, $1.2 \cdot 10^6$ for virtuals, parallelized in 30/60 runs.
- CPU time per ps point: $\sim 5 ms$ for reals, $\sim 4s$ for virtuals.

Results

Imposed cuts:

- K_T -algorithm with R = 0.8.
- $P_T \ge 30 \text{ GeV}$, $|\eta| \le 2.5 \quad \Delta R > 0.8$.

Renormalization scale: $\mu_R = \mathbf{x} \cdot \mu_0$, $\mu_0 = \sqrt{\sum_i P_{T,i}^2}$

Factorization scale: $\mu_F = 100 \text{GeV}.$

$$\mu_0/4 \le \mu_R \le 2\mu_0$$

Scattering AMplitudes from Unitary-based Reduction Algorithm at the Integrand-level

[Mastrolia,Ossola,Reiter,Tramontano]

- → G.Ossola's talk
- 2. approach: Making use of SAMURAI package to calculate virtuals for $q\bar{q}\to b\bar{b}b\bar{b}$.
- Idea: Performing reduction on integrand level using OPP-method [Ossola,Papadopoulos,Pittau] in automated way.
- Results:
- Increase of speed (~ 0.4s) per point
- Reduction of size of code by factor \sim 10
- Increased numerical stability

Numerical cancellation of singularities

Pole cancellations important check for numerical stability

 $\frac{\frac{Pole_{virt}}{Pole_{sub}} - 1}{|\mathcal{M}_{Born}|^2}$

- Integration of $q\bar{q} \rightarrow b\bar{b}b\bar{b}$ with 10⁵ points in double precision, cuts as before.
- No points with numerical problems found (large K-factor).
- ⇒ Numerical stability well under control.

Outlook

$$pp \rightarrow 4b + X$$

Real emission part:

 Implementation with MadGraph/Dipole/Event finished and integration working.

- \bullet CPU-time for real emission: \sim 20ms per phase space point.
- Integration checked with with HELAC/PHEGAS.

Results for real emission $pp \rightarrow b\bar{b}b\bar{b} + X$

 $|\mathcal{M}_{\textit{real}}|^2$ - sub. terms.

- Cuts as for qq̄
- $\mu_r = \mu_F = \mu_0$
- $\alpha = 10^{-2}$
- 10⁹ phase space points, splitted in 50 runs.
- jets ordered according P_T.

Invariant mass distribution.

P_T -distribution

Virtual part:

- Working on comparison with second independent code.
- Optimistic concerning size of code and CPU time.

Possible improvements:

- Instead of numerical integration take sample of unweighted events of the Born and perform reweighting with virtual corrections.
 - → Faster because less points needed.

Summary

- NLO QCD correction necessary for multi-leg final states at LHC
- Production of 4 b quarks important signal for MSSM/Higgs.
- Both virtual corrections and real emission / subtraction terms done in two different ways.
- Quark initiated case finished.
- Inclusion of SAMURAI lead to increase of speed and stability.
- For full pp → 4b real emission finished and integration working.
 - Further testing for virtual gg amplitude required.

Backup slides

P_T -distribution for 3. and 4. jet

